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SUMMARY

The optimum landing of a spacecraft at a

fixed point on the surface of the Moon from

a low circular AMS orbit 1is investigated. Ana-
lyzed are the influence of thrust load, of the
height of the initifal orbit and of the range

of the landing site on the magnitude of space-
craft's final mass. Examples are brought out
of optimum trajectories and optimum control
programs of thrust magnitude and direction.

The landing of a spacecraft cn the surface of the Moon is
one of the most power-requiring among the complexes of maneuvers
during the flight to the Moon. Therefore, it is desirable to
estimate the minimum need of fuel consumption and to investigate
the peculiarities of optimuim trajectory landing.

A considerable number of works are dedicated to this problem

[1-3]). However,

Fig.1.

in their investigations al) sorts of simplified

suggestions are used which narrow the range
of application of the obtained results. In
the present work the optimum landing is esti-
mated from a circular AMS orbit on the Moon's
surface of a spacecraft in which the control
of magnitude and direction of thrust and ejec-
tion velocity is inertialess and is indepen-
dent of the magnitude of the thrust. The
motion takes place in the central Newtonian
gravitational field of the Moon. The assign-
ment of spacecraft's initial position on the
circular AMS orbit is connected with the fact
that low circular orbits attract attention as
possible intermediate portions of the flight
trajectory of spacecrafr to the Moon with
crevw on board. '



The denotations used in the work are clear from Filg.l.
Employed here is the Descartes' inertial system of coordinates
connected with the center of the Moon: 1) 18 the pcint of des-
cent from the orbit, 2) is the point of landing, 3) is the hori-
zontal st descent from the orbit, 4) 1is the local horizontal.

Making use of L.S. Pontryagin's maximum principle, the
equations of optimum motions will be written as follows:
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where
A== (24 w)" p== (0 p~)",
M(t)
= H(0) is the dimensionless mass, o is the consumption of mass m

per second, P = P/gE is the dimensionless reactive thrust, c¢ is

the constant outflow velocity of reactive jet, u = gyRy2, gy, Ry
is the acceleration of the free fall on the surface of the Moon

and its radius, g = 9.81 m/sec?.

Contreolling functions: The i1agnitude P and the orientation
angle © of the reactive force satisfy the required optimum condi-
tions
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where 0= p + mpg,/c.

The questions of special control are not investigated in the
present work, i.e. according to \2), P assumes only the limiting
values Ppayx and O, and the zeros of function O serve as change-
over points.
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The final value of the mass m(T) = m' = max, serves as the
maximizing problem ¢f the functional. -
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The controls (1) have for the first integral
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The maneuver scheme is presented ‘n Fig.l, where R = Ry + H
and H are the radius and the hefght of the initial orbit, the
axis Oy 18 drawn through the landing point, i is the angular range
from the assigned point of descent from the orbit (in degrees),
h and L are the current values of altitude above the surface of
the Moon and of the selenocentric range (in km). The boundary
conditions have the form

t =0, u(0o) = Uo = Vhound(H)cos ¥, v(0) = v? = Vbound<H)Siﬂ v, (4)

x(0) = x° =« ~R sin ¥, y(0) = y?® = R cos ¢, m(0) = 1,
t = T, u(T) = u! = 0, v! = 0, x* = 0, y' = Ry, p'pm = = 1. (5)

At the inicial moment of time the values of pu, Py, Px, Py,
Pm are unknown. These parameters must be selected in such a man-
ner that the trajectory of system (1) corresponding to them and
toc condition (4) pass through the point (5). At the same time the
values of P, ¥ 1in system (1) must satisfy the conditons (2). Taking
into account (3), the number of selected parameters will be four.

In each trajiectory obtained as a result of the solution of
the boundary value problem, the maximum principle and the boundary
conditions are fulfilled, 1.e. all the obtained trajectories
satisfy the-total combination of required conditions for the local
functional's maximum. It 1is possible to hit the point on the Moon's
surface at the range Yy from the fixed point on the orbit by means
of flights with angular ranges 9§, ¢ + 360°, ¢ + 720°, etc. Only
the landing trajectories on the first orbit are investigated in
this wcrk.

For the solution of the boundary value problem (1)-~(5) the
Newtonian method was used with the modification, described in [4].
As a result we obtain the optimum control of thrust and orienta-
tion angle magnitudes and their corresponding optimum trajectory.

As an example we shall bring forth the initial data for the
descent from the orbit H = 200 kn, Yy = 100°, P, ., = 0.4:

Py’ = —0.289265358, pe’ = 0.283924199,
pyv® = 0,046420083, Pm’ = —0.538128174;

px’ being determined from the condition # = 0.
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The values of parameters were assumed as follows: gy =
= 1.622 m/sec?, Ry = 1737 km, ¢ = 3100 m/sec. The a.titude of
the initial orbit varied from 15 to 200 km, while the selenocent-
ric angular range of the landing sector varied from 10° to 180°,.
The dimensionless spacecraft's mass m' rises with the increase
of the total range (Fig.2), reaching at § 30° - 4C° a value close
to maximum. This value depends little on the altitude of the ini-
tial orbit and on spacecraft's thrust load (see solid lines 1in
Fi1g.3). Therefore, only the results of computations for the ini-
tial relative thrust load Ag = Ppax/gp = Pmax = 0.4 are presented
below.
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The trajectories shown in Figs.4,5, are typical for smaller
and bigger values cf Y. The trajectories are composed of three
portions: those of maximum thrust at the beginning and at the end
of descent, separated by a passive sector. Such a condition of
thrust magnitude control is optimum for the entire investigated re-
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gion. This result agrees well with [5]. For vatues ¢ > i5°-20°
the first active sector is small from the standpoint of time
(Fig.6) and of the characteristic velocity AV,. 1In it, the im-
pulse for descent from the orbit is in fact given. The passive
flight sector, following 1t next, compensates the difference in
range over trajectories with different Y. The second active
sector, that of deceleration, over which the velocity 1is damped
down to 987, 1s fundamental. 1In the range of small distances
there 18 no such demarcation of active cectors, and they are com-
mensurate with respect to time and characteristic velocity.
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With the increase of y (for y > 20°) the optimum program of
thrust ¢-vector orientation (in the inertial system of coordinates
~ from the horizon at the point of descent from the orbit), ap-
proaches the linear function of t. At the same time, as the total

range increases, the value of U

t, t, decreases and approaches the angu-
ty 8ec| Hegoom lar velocity of the AMS at zero
oo height. Shown in Fig.7, is the

averaged angular coefficient 4z
///// of the orientation program in the
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braking sector for those angular distances, where such averaging
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has sense. Owing to small duration of the descent portion of or-
bit, its orientation angle varies insignificantly, the thrust
being directed almost against the veiocity. The averaged orien-
tation angle of the thrust vector 1is presented in Fig.8., With
the decrease of total landing range, the impulse approaches the
lateral load. With the increase of initial orbit's height, so
does the impulse angle of deflection downward from the transverse
direction.

At small values of ¥ the orientation program is essentially
nonlinear (Fig.4). Such an evolution of the program # (t) {of
orientation) with the variation of total range is explained by
the change of type p-trajectories [5,6]*. For small landing ran-
ges the p-trajectories are close to elliptical, the angular motion

velocity of the imaginary point is not constant. With the increase

of ¥ the g-trajectories approach the circular, over which the
motion velocity of the imaginary point is constant (F1ig.9). Phy-
sically the described character of programs' ¢ (t) variation is ex-
plained by the fact that for small angular landing ranges, the
gravitational forces for the rotation of thke veleoccity vector are
not sufficiently used, and the trajectory distortion 1is basically
achieved with the aid of the thrust.
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* By p-trajectories we un%b stand the hodograph of vector — § =
= — (pyl + pvl), vhere i are the orts of axes Ox, Oy.

A W bt T




Shown in Fig.1l0 are the trajectories of the braking portion
in the plane (h,L). At landing from orbits #H > 100 km the tra-
jectories are close to spiral (with constant angle ?.

In conclusion let us note that the equations of optimum
motion (1) are written without taking into account a series of
limitations, possible in practice. 1In a series of cases the ob-
tained values of the functional m' cannot be attained in reality.
Presented in Fig.1l1l is the altitude dependence of the beginning
of the braking portion on the landing range and orbit heigh:

With great §y (when ¥ > 100°) the initial height of the braki-;
sector 18 of several kilometers.

Trajectories with greater range are inadmissible even from
the point of view of safety. The flight's altitude is commensu-
rate with the altitude of lunar mountain:y over a considerable
part of the braking portion, With angular distances of the order
of 180° the solution of the variation problem (1)-(5) must be
conducted by taking into account the phase limitations, as with
the absence of the latter the trajectories pass under the surface
of the Moon. However, there 1s no requirement in the use of tra-
jectories of greater angular range, because the value of the
final mass close to maximum is attained starting with ¢ = 40°-50°,

The dependence m! (Ppgx) obtained in the work (see Fig.3) 1is
universal. As 1is well known [7,8], it can be used for the selec-
tion of motive installation from the condition of payload maximum
(in the assumption, that the weight of the engine and the thrust
generated by it are linked unambigously. For the linear law
Geng = XPpax without tak}ng into acc?unt the weight of tanks the
dependence of relative m p,.7,,4 = M KAg on Ag = Pnax/8g 18 shown
in Fig.3 by dashed lines, w%ere it may be seen that it has a well
defined extremum.
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